Molecular Genetics and Otolaryngology

Michael E. Prater, MD
Shawn D. Newlands, MD
Introduction

- Chromosomal analysis
- Cytogenetics
- Molecular biology and genetics
- Biochemical genetics
- Clinical genetics
- Population genetics
- Genetic epidemiology
- Developmental genetics
- Immunogenetics
- Genetic counseling
- Fetal genetics
History

- **Gregor Mendel, 1865**
 - “Mendel’s Laws” of autosomal inheritance
 - Work “lost” until early 1900’s

- **Charles Darwin, 1859**
 - “The Origin of Species”
 - Jean Baptiste Lemarck
History, continued

- Francis Galton (Charles Darwin’s cousin)
 - The “father” of modern genetics
 - rediscovered Mendel’s laws
 - “nature versus nurture”
 - “inborn errors of metabolism” responsible for biological abnormalities
History, Continued

- James Watson and Francis Crick
 - DNA discovered in 1940’s
 - Determined double helix in 1953
 - Nobel Prize in 1962

- Human Genome Project
 - Begun in 1990
 - Goal is to identify every human gene by 2005
 - 9% completed as of 1999
Classification of Disorders

Single Gene Defects
- Usually single critical error in the genetic code
- Usually phenotypically obvious
- Examples: NF I and II, osteogenesis imperfecta, cystic fibrosis
Classification, continued

- Chromosomal disorders
 - not due to single defect
 - usually due to deficiency in number of genes within chromosome
 - classic example is Down Syndrome (Trisomy 21)
 - other examples: Trisomies 13, 18, Klinefelter’s Syndrome, Turner’s Syndrome
 - phenotypically obvious
 - usually incompatible with life
Classification, continued

- Multifactorial inheritance
 - multiple single code defects
 - usually form a pattern
 - classic examples: cleft lip/palate, neural tube defects
 - possible example: head and neck cancer?
Chromosomal Structure

- 23 pairs of chromosomes
- approximately 7 million base pairs
- 100,000 genes
- DNA:
 - five carbon sugar (deoxyribose; ribose in RNA)
 - nitrogen base (purines, pyrimidines)
 - 3’5’ phosphate linkage
 - hydrogen bonded double strand
DNA Bases

Purines
- Adenine (A)
- Guanine (G)

Pyrimidines
- Thymine (T)
- Cytosine (C)

Phosphate Deoxyribose

Base
DNA Bases
Transcription

The Central Dogma
Tools of Genetics

- Revolutionary changes since late 1970’s
 - restriction enzymes
 - recombinant DNA
 - vectors
 - probes
 - PCR
 - DNA sequence analysis
 - protein analysis
Tools of Genetics, cont.

- **Restriction Endonucleases**
 - enzymes which cleave DNA at specific sites
 - almost always palindromic
 - hundreds of known endonucleases

- **Recombinant DNA**
 - an DNA fragment is combined with a known piece of DNA to form a plasmid
 - plasmid inserted in vector (bacterium, virus, yeast)
 - vector cultured and isolated
Tools, continued

- Identification of recombinant fragments
 - “Blotting” - southern, northern, western
 - electrophoresis/chromotography of fragment
 - hybridization with known radioactive fragment
 - antibodies to known fragments may be used
Tools, continued

- Polymerase Chain Reaction (PCR)
 - simplest, most rapid, most effective
 - enzymatic amplification of desired fragment
 - DNA fragment formed by endonuclease
 - known “primer” is annealed to fragment
 - steps repeated approximately 30 times
 - yields more than a billion copies of desired DNA fragment
Tools, continued

- DNA Sequence Analysis
 - Fred Sanger, Nobel Prize 1980
 - also won Nobel Prize in 1958 for protein analysis
 - nucleotide analog with inhibits DNA synthesis
 - endonuclease which cleaves at nucleotide site
 - electrophoresis/chromotography
 - radioactive tagging/antibodies
Genetic Mutations

Defn: Permanent change in nucleotide sequence

- occur in somatic cells or germline cells
 - only germline cells inherited

- somatic mutations believed responsible for many medical problems
 - many cancers, ?CAD
Gentic Mutations, cont.

Genome Mutations

- missegregation of chromosome
 - results in aneuploidy
 - Down Syndrome classic example
 - 1:50 meiotic divisions
 - usually incompatible with life
Genetic Mutations, cont.

- **Chromosome mutations**
 - usually involve translocations and rearrangements
 - 1:1000 meiotic divisions
 - almost uniformly incompatible with life

- **Gene mutations (single gene defects)**
 - DNA replicates 20 bases/sec/polymerase
 - Only one defect per ten million copies
 - Repair enzymes repair 99.9% of defects
 - Less than one defect per 10 billion bases!
Genetics and Cancer

- Tumor cells are clone of abnormally dividing cell
 - usually from single/multiple point mutations
 - rarely from translocations

- Protooncogenes
 - normal growth genes

- Oncogenes
 - a protooncogene which has undergone somatic mutation and is oncogenic
Genetics/Cancer, cont.

- Tumor Suppressor Genes
 - genes that regulate cell growth/genomic expression
 - p53, Bcl-2 are classic examples
 - p53:
 - arrests growth in G1 (growth 1) phase
 - allows repair of DNA defects
 - induces apoptosis (programmed cell death)
 - found in 40% of HNSCCa
 - have NOT shown correlation with prognosis
Bcl-2 tumor suppressor gene

- normal Bcell lymphoma/leukemia gene (Bcl-2)
- prevents apoptosis (programmed cell death)
- somatic mutations present HNSCC, usually resulting in overexpression

Friedman’s study:
- retrospective study of Stage I/II HNSCCa
- overexpression of Bcl-2 lead to 50% cure versus 90% in normal expression
- others unable to reproduce (see Gallo)
Treatment

- Most disease treated at phenotypic level
 - medicines
 - surgery
 - genetic counseling

- Molecular level
 - gene therapy
Treatment, continued

Gene Therapy

- attempted modification of abnormal cell function
- involves transfer of functioning genes
- gene therapy via addition
 - more practical
 - insertion into cell (not necessarily into genome) of functioning gene
- gene therapy via replacement
 - theoretical
 - goal is to replace abnormal gene with inserted gene
Treatment, continued

Gene therapy, continued

Transfer strategies
- recombinant DNA in vector
 - viral versus bacterium
 - retroviral vectors with reverse transcriptase
- not inserted into host genome

Problems:
- inability to maintain expression
- under/overexpression
- adenine deaminase deficiency (ADA)
Genetic Disease in ENT

Cystic Fibrosis

- chromosome 7q, spans 250,000 bases
- 70% have deletion of phenylalanine at position 508 (point mutation)
 - frameshift versus point mutation
- most common fatal autosomal disease in whites
- phenotypic expression results from failure of membrane transport (Cl, Na) and from exocrine function (pancreas)
- Tx at phenotypic level
Genetic Dz in ENT, cont.

- Cleft Lip and Palate
 - one of the most common malformations
 - CL and P genetically distinct from isolated CL
 - failure of fusion of frontal process with maxillary process at 35 days gestation
 - classically described as multifactorial, although single gene forms, chromosomal forms (Trisomy 13) teratogenic forms (rubella, thalidomide) are known
Genetic Dz in ENT, cont.

- Human papilloma virus
 - strains 16, 18 and 31 carcinogenic in GU tract
 - exact role in HNSCCa not fully known, although 46% of post mortem specimens contained HPV strains
 - E6 HPV protein binds to p53 forming mutation which suppresses gene function in vivo
Genetic Dz in ENT, cont.

Thyroid carcinoma

- Medullary thyroid carcinoma (MTC)
 - neoplasm of parafollicular C cells (ultimobranchial body)
 - produce calcitonin
 - sporadic and familiar forms
 - familial MTC associated with MEN 2A and 2B
 - MEN 2A: pheo, hyperparathyroid, MTC
 - MEN 2B: pheo, MTC, Marfan’s, NFI
 - RET protooncogene associated with familial forms
 - 10p

- Aggressive papillary CA associated with aneuploidy
 - noninvasive dz uniformly diploid
Genetic Dz in ENT, cont.

Salivary Gland Neoplasms

- Aggressive adenoid cystic Ca associated with aneuploidy
 - all patients with aneuploidy recurred after resection versus only 2/14 with diploid genome (Sugano)
- Salivary gland adenocarcinoma with overexpression of Bcl-2 were more difficult to resect, recurred more frequently and metastasized more frequently (Sugano)
Genetic Dz in ENT, cont.

- Acoustic Neuroma
 - 5% are familial and associated with NF II
 - often bilateral
 - NF II defect on 22p
 - therapy at phenotypic level
Genetic Dz in ENT, cont.

Congenital Hearing Loss
- 60% of congenital hearing loss is genetic
- most associated with phenotypic anomaly
- Waardenburg Syndrome
 - autosomal dominant - variable penetrance
 - dystopia canthorum, hyperchromatic iris, white forelock and SNHL
 - PAX3 locus of chromosome 2
 - treatment at phenotypic level
Genetic Dz in ENT, cont.

- Congenital hearing loss, continued
 - Usher’s Syndrome
 - autosomal recessive
 - five different classifications (Usher’s Types I through V)
 - all subtypes on different chromosomes
 - associated with retinitis pigmentosum
 - therapy at phenotypic level
Genetic Dz in ENT, cont.

- Congenital Hearing Loss, continued
 - Pendred’s Syndrome
 - autosomal recessive with variable penetrance
 - located on chromosome 7q
 - associated with thyroid goiter and carcinoma
 - tx at phenotypic level
Genetic Dz in ENT, cont.

- Congenital hearing loss, cont.
 - Alport’s Syndrome
 - two forms: X linked, autosomal recessive
 - X linked on 5p, produces mutant alpha 5 protein
 - recessive form on 2p, produces mutant Type IV collagen
 - treatment at phenotypic level
Genetic Dz in ENT, cont.

- Head and Neck Cancer
 - heavily associated with p53 underexpression, Bcl-2 overexpression, HPV types 16, 18 and 31
 - None of these proven prognostic
 - Ultimate goal: gene therapy to correct somatic mutation
Future Directions and Conclusion

- Rapidly expanding field
- Ultimate goal: correction of somatic defect which would correct phenotypic abnormality. Would eliminate surgical intervention.